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Abstract: A graph G is a common multiple of two graphs H; and H, if there exists
a decomposition of GG into edge-disjoint copies of H; and also a decomposition of
G into edge-disjoint copies of Hs. If G is a common multiple of H; and Hs, and G
has ¢ edges, then we call G a (q, Hy, Hy) graph. Our paper deals with the following
question: Given two graphs H; and Hs,, for which values of ¢ does there exist
a (q, Hy, Hy) graph? when H; is either a path or a star or a cycle and Hs is a
complete bipartite graph.
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1. Introduction

All graphs considered here are finite and undirected unless otherwise noted. Let
|[V(G)| and e(G) denote, respectively, the order of a graph G and the size of G,
that is, the number of edges in G.

K, denotes the complete graph on n vertices, and K,,, denotes the complete
bipartite graph with vertex partitions of cardinality m and n. A k-path, denoted
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by Py, is a path with k vertices (is a path of length k — 1); a k-star, denoted by Sk,
is the complete bipartite graph K ; a k-cycle, denoted by Cj, is a cycle of length
k.

Let G and H be graphs. A decomposition of GG is a set of edge-disjoint subgraphs
of G whose union is G. An H-decomposition of G is a decomposition of GG into copies
of H. If G has an H-decomposition, we say that G is H-decomposable or H divides G
and write H|G.

Given two graphs H; and H,, one may ask for a graph G that is a common
multiple of H; and H, in the sense that both H; and Hs divide G. Several authors
have investigated the problem of finding least common multiples of pairs of graphs;
that is, graphs of minimum size which are both H;- and Hs-decomposable. The
problem was introduced by Chartrand et al in [4] and they showed that every two
nonempty graphs have a least common multiple. It is clear that least common
multiple of two graphs may not be unique. The size of a least common multiple of
two graphs H; and Hs is denoted by lem(Hy, Hy). Also if ¢; and ¢y are two natural
numbers, their number theoretic lem is denoted by lem(qy, ¢2) as usual. Clearly, for
two graphs Hy and Hs, lem(Hy, Hy) > lem(e(Hy), e(Hs)). The problem of finding
the size of a least common multiple of graphs has been studied for several pairs
of graphs: cycles and stars [4, 11], paths and complete graphs [9], pairs of cycles
[8], pairs of cubes [2]. Pairs of graphs having a unique least common multiple were
investigated in [5] and least common multiples of digraphs were considered in [6].

If G is a common multiple of H; and H,, and G has ¢ edges, then we call G a
(q, H1, H2) graph. An obvious necessary condition for the existence of a (¢, Hy, Hs)
graph is that e(H;)|q and e(Hy)|g. This obvious necessary condition is not suf-
ficient. Some necessary conditions are easy to see and others are more difficult.
For example there is no (15, K3, Kg) graph as there is no Kj-decomposition of
Kg. However, the non-existence of a (36, K3, K;) graph is somewhat less obvious.
Hence a natural question is: Given two graphs Hy and Hsy, for which values of q,
does there exist a (q, Hy, Hy) graph? Adams, Bryant, and Maenhaut [1] gave a
complete solution to this problem in the case where H; is the /-cycle and Hs is a
complete graph; Bryant and Maenhaut [3] gave a complete solution to this problem
in the case where H; is the complete graph K3 and H, is a complete graph. A
complete solution to this problem in the case where H; is a path and H, is a star
is investigated in [7].

In this paper we establish necessary and sufficient condition for the existence
of a (q, Py, Kin.) graph, a (q, Ps, Kp.) graph, a (g, Ss, Kin.,) graph, a (q, Sy, Kpn)
graph and a (¢, Cy, K, ) graph. The graph theoretic concepts described here are,
of course, suggested by their number theoretic counterparts.
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2. Preliminaries

In this section we collect some needed terminologies and notations, and present
some results which are useful for our discussions. The complete graph with vertex
set {v1, va,..., vy} will be denoted by [vy, va,..., vy], the m-cycle C,, with vertex
set {vy, va,..., v} and edges {vy, vo}, {v2, vs3},..., {vm, v1} will be denoted by
(v1, Vay..., Up), the m-path P, with vertex set {vi, vs,..., v, } and edges {vy, vo},
{va, v3},.eey {Um—1, v} Will be denoted by (v, va, ..., v,) and the m-star S, with
vertex set {vg, v1, Ua,..., Uy} and center at vy will be denoted by [vo; vy, va,...,
U] If G and H are graphs, and H is a subgraph of G, then the graph obtained
by removing the edges of H from G will be denoted by G — H. If G; and G, are
graphs, then the union of G; and G5, denoted by G U (s, is the graph with vertex
set V(Gh1UG2) = V(G)UV(Ge) and edge set E(G; UGs) = E(G1) U E(G;). (We
shall only be considering the union of edge-disjoint graphs.)
We recall three results on P -decomposition, Si-decomposition, and C}, - decom-
position of K,,, as follows.

Theorem 1. [10] Let k,m, and n be positive integers. There exists a Pyi1-
decomposition of K, , if and only if mn = 0 (mod k) and one of the cases in
Table 1 occurs:

Table 1: Necessary and Sufficient Conditions for P ;-Decomposition of K,, ,

Case k m n Characterization
1. | even | even | even | k < 2m, k < 2n, not both equalities
2. even | even | odd k<2m-—2,k<2n
3. even | odd | even k<2m,k<2n-—2
4. odd | even | even kE<2m-—1,k<2n-—1
5. odd | even | odd E<2m—1,k<n
6. odd | odd | even E<m,k<2n-—1
7. odd | odd | odd E<m,k<n

Theorem 2. [13] Let k, m, and n be positive integers with m < n. There exists
an Sk-decomposition of I, if and only if one of the following conditions holds:

1. m >k and mn =0 (mod k);
2. m<k<nandn=0 (mod k).

Theorem 3. [11] Let k, m, and n be positive integers. K, ,, has a Co-decomposition
if and only if m and n are even, k > 2,m > k,n >k, and mn =0 (mod 2k).



354 South FEast Asian J. of Mathematics and Mathematical Sciences

We will use the following theorem on the least common multiple of two bipartite
graphs by O. Favaron and C. M. Mynhardt.

Theorem 4. [8] If F and G are bipartite, then lem(F,G) < e(F)e(G), where
equality holds if ged(e(F),e(G)) = 1.

3. Common Multiples of P, and K, ,

In this section we determine, for all positive integers m and n, the set of integers
q for which there exists a common multiple of Py (4-path) and K,, , having precisely
q edges.

Theorem 5. There exists a graph with q edges that is both Py-decomposable and
K, - decomposable if and only if

1. ¢=0 (mod 3) and ¢ =0 (mod mn); and
2. q#mn whenm=1,n=0 (mod 3) (orn=1,m=0 (mod 3)).

Proof. If there exists a (¢, Py, K,,,) graph, then we require that 3 divides ¢ and
that mn divides ¢q. Necessity of (1) is obvious. If m = 1,n = 0 (mod 3), or
n = 1,m =0 (mod 3), then lem(3,mn) = 3, but K,,, is not Pj-decomposable
(Theorem 1). So g # mn.

To prove the sufficient conditions consider the following cases.

Case 1. gcd(3,mn) = 1.

Since P, and K,,, are bipartite graphs and gcd(3,mn) = 1, lem(Py, K,,) =
3mn by Theorem 4. Therefore there exists a (kmn, Py, K, ,) graph for all k =0
(mod 3).

Case 2. gcd(3,mn) = 3.

Then either 3|m or 3|n, since 3 is a prime number. So this case can be divided into
two subcases.

Case 2.1. m,n > 2.

By Theorem 1, Py|K,,,, for all m,n > 2 and hence there exists a (kmn, Py, K,, )
graph for all £ > 1.

Case 2.2. m=1,n=0 (mod 3) (orn=1,m =0 (mod 3)).

Suppose that m =1,n =0 (mod 3). Let n = 3r.

Now it is sufficient to construct a (kmn, Py, Ky, ) graph G for all k > 1. For this
we let G be Ky, where £ > 2. Then G can be decomposed into k edge-disjoint
copies of K, and G is P;- decomposable by Theorem 1. Similarly we can prove

~

the case when n = 1,m =0 (mod 3) since K, ,, = K .
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4. Common Multiples of P; and K,,,

In this section we determine, for all positive integers m and n, the set of integers
q for which there exists a common multiple of Ps (5-path) and K, ,, having precisely
q edges.

Theorem 6. There exists a graph with q edges that is both Ps-decomposable and
K, - decomposable if and only if

1. ¢=0 (mod 4) and ¢ =0 (mod mn); and
2. q#mn whenm=n=2,m=1n=0 (mod 4) orn=1,m=0 (mod 4).

Proof. If there exists a (¢, Ps, K;,») graph, then we require that 4 divides ¢ and
that mn divides q. Necessity of (1) is obvious. If m = n = 2, then lem(4, mn) = 4,
but Kjs is not Ps;-decomposable. So ¢ # 4. If m = 1,n = 0 (mod 4), or
n =1,m =0 (mod 4), then lem(4,mn) = 4, but K,,,, is not Ps-decomposable
by Theorem 1. So q # mn.

To prove the sufficient conditions consider the following cases.

Case 1. ged(4,mn) = 1.

Then m and n are odd numbers. Since P5 and K,,, are bipartite graphs and
ged(4,mn) = 1, lem(Ps, Ky,) = 4mn by Theorem 4. Therefore there exists a
(kmn, P5, K,,,,) graph for all £ =0 (mod 4).

Case 2. ged(4,mn) = 2.

Then m = 2 (mod 4) and n is odd (or n = 2 (mod 4) and m is odd). Without
loss of generality we may assume that m =2 (mod 4) and n is odd.

Since lem(4, mn) = 2mn, it is sufficient to construct a (2mn, Ps, K., ,) graph G,
as all the required graphs can be constructed as the vertex-disjoint union of the
appropriate number of copies of this.

If m = 2,n =1, to construct a (4, P5, K, ,) graph G, we let G be Ps, which is
both Ps-decomposable and K ;-decomposable. If m > 2,n = 1, to construct a
(2m, Ps, K1) graph G, we let G be K, 5, which is both Ps-decomposable (The-
orem 1) and K, ;-decomposable. If m > 2 ,n > 1, to construct a (2mn, Ps, Ky, )
graph G, we let G be K, 9,. Clearly G can be decomposed into two edge-disjoint
copies of K,,,. G is Ps-decomposable by Theorem 1.

Case 3. ged(4,mn) = 4.

This case can be divided into four subcases.

Case 3.1. m=0 (mod 4),n=1 (or n =0 (mod 4),m = 1).

Then 4|/mn. The graph K,,, is not Ps-decomposable and there is no graph with
mn edges which is both K, ,,-decomposable and Ps-decomposable. Now it is suffi-
cient to construct a (kmn, Ps, K, ,) graph G for all k£ > 1. For this case we let G
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be K, x, k > 2. G can be decomposed into k edge-disjoint copies of K, ;. For all
k > 2, G is Ps-decomposable by Theorem 1.
Case 3.2. m = 0(mod 4), n > 1, an odd number(or n = 0 (mod 4), m > 1, an
odd number).
Let m = 4r and n = 2s + 1, where r,s > 1. Then by Theorem 1, Ps|K,, .
Case 3.3. m=n = 2.
It is sufficient to construct an (8, Ps, K32) graph and a (12, P5, K 5) graph and all
the required graphs can be constructed as the vertex disjoint union of appropriate
number of copies of these.
To construct an (8, Ps, K»2) graph G, we let G be the union of the following two
edge-disjoint copies of Ky (i.e. Cy):

(1,2, 3,4) and (4, 5, 6, 7).

A Ps-decomposition of GG is given by the following two edge-disjoint copies of
Ps:

(2,3,4,5,6) and (2,1,4,7,6).

To construct a (12, Ps, Ks5) graph G, we let G be the union of the following
three edge-disjoint copies of Kyo (i.e. Cy):

(1,2, 3,4), (4,5,6,7) and (6, 8, 9, 10).

A Ps-decomposition of GG is given by the following three edge-disjoint copies of
Ps:

(1,2,3,4,5), (5,6,10,9,8) and (8, 6, 7, 4, 1).
Case 3.4 m,n =0 (mod 2), m,n >4.
Then 4|mn and by Theorem 1, P5| K, .
Cases 3.1 and 3.3 allow us to construct the (¢, Ps, K, ,,) graphs that we require for
the sufficient condition(2) of Theorem 6.

5. Common Multiples of S5 and K, ,

In this section we determine, for all positive integers m and n, the set of integers
q for which there exists a common multiple of S3(3-star) and K, , having precisely
q edges.

Theorem 7. There exists a graph with q edges that is both S3-decomposable and
Ky -decomposable if and only if ¢ =0 (mod 3) and ¢ =0 (mod mn).

Proof. If there exists a (¢, S3, K,,,) graph, then clearly we require 3 divides ¢ and
mn divides q.

To prove the sufficient conditions consider the following cases.

Case 1. gcd(3,mn) = 1.

Since S5 and K,,, are bipartite and gcd(3,mn) = 1, lem(Ss, Kp,n) = 3mn, by
Theorem 4. In this case we can take a (g, Ss, Kp,»n) graph G as Ksp,, or K, 3.
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Both graphs contain 3mn edges and G can be decomposed into 3 edge-disjoint
copies of K, , and mn edge-disjoint copies of Kj 3 (i.e. S3). Therefore there exists
a (kmn, Ss, K, ,) graph for all £k =0 (mod 3).

Case 2. ged(3,mn) = 3.

In this case either 3|m or 3|n, since 3 is a prime number. Then S5|K,, ,,, by Theorem
2. So there exists a (kmn, S3, K,,,) graph for all k£ > 1.

6. Common Multiples of S; and K,,,,

In this section we determine, for all positive integers n, the set of integers ¢ for
which there exists a common multiple of Sy (4-star) and K,,, having precisely ¢
edges.

Theorem 8. There exists a graph with q edges that is both Sy-decomposable and
K, -decomposable if and only if

1. ¢ =0 (mod 4), ¢ =0 (mod mn); and
2. q# 4 when m=mn=2.

Proof. If there exists a (¢, S4, K,y,,) graph, then clearly we require 4 divides ¢ and
mn divides ¢. If m = n = 2, then mn = 4 and there is no (4, S4, K,,) graphs.
A graph with 4 edges containing Sy is 9y itself, but Sy is not K3 s-decomposable.
Similarly a graph with 4 edges containing Ks 5 is not Sy- decomposable. So ¢ # 4
when m =n = 2.

To prove the sufficient conditions consider the following cases.

Case 1. ged(4,mn) = 1.

Then m and n are odd numbers. Since S; and K,,, are bipartite graphs and
ged(4,mn) = 1, lem(Sy, Knn) = 4mn, by Theorem 4. Therefore there exists a
(kmn, Ss, Kp,,) graph for all k =0 (mod 4).

Case 2. ged(4,mn) = 2.

Without loss of generality we may assume that m is an even number not divisible
by 4 and n is an odd number.

Let m =2r and n = 2s + 1, where r > 1,s > 0.

Let G = Koy, be the required (q, Sy, Kpn) graph. Clearly G has 2mn edges and
G can be decomposed into two edge-disjoint copies of K, .

Ko = Ky, can be decomposed into rn edge-disjoint copies of Ky 1(i.e.Sy). Thus
an Sy-decomposition of G is obtained.

Therefore there exist (kmn, Sy, Ky, ) graphs for all even k.

Case 3. ged(4,mn) = 4.

Here we need to consider three cases.

Case 3.1. m=0 (mod 4),n >1 (orn=0 (mod 4), m > 1).
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Let m = 4r and n > 1. Then K,,, = K, can be decomposed into rn copies of
Ky 1(i.e.S4). In this case Sy| Ky, p.
Case 3.2. m=2 (mod 4) & n =2 (mod 4).
Let m =4r + 2 and n = 4s + 2.
Then by Theorem 2, Sy| K, ,, for all r and s except the case when r = s =0 ( i.e.
m=n=2).
Case 3.3. m=n=2.
Clearly K, is not Sy - decomposable. For a (8, Sy, K22) graph G, consider G =
Ky 4 and it is Sy-decomposable and K ;-decomposable.
To construct a (12,54, K22) graph G, we let G be the union of following three
edge-disjoint copies of Ky a(or Cy):

(0, 1,2, 3), (5,4, 7,2) and (4, 6, 0, 8).

An S;-decomposition of G is given by the following three edge-disjoint copies
of Sy:

0;1,3,6,8],[2;1, 3,5, 7] and [4; 5, 6, 7, 8].
All other required graphs can be constructed by the vertex disjoint union of ap-
propriate number of copies of (8, Sy, K22) and (12, 5y, Ks5).

7. Common Multiples of (s and K, ,

In this section we determine, for all positive integers m and n, the set of inte-
gers ¢ for which there exists a common multiple of Cy (4-cycle) and K, , having
precisely ¢ edges.

Theorem 9. There exists a graph with q edges that is both Cy-decomposable and
K, n-decomposable if and only if

1. ¢=0 (mod 4) and ¢ =0 (mod mn); and
2. q # mn when 4|m, n is an odd number (or 4|n, m is an odd number).

Proof. If there exists a (¢, Cy, K, ) graph, then clearly we require 4 divides ¢
and mn divides ¢. Consider the cases when 4|m and n is an odd number, or 4|n
and m is an odd number. We prove only one case since K,,, = K, ,,. Suppose
that 4|m and n is an odd number. Then 4|mn, but by Theorem 3, K,,,, is not Cy-
decomposable since n is odd. So ¢ # mn in this case.

To prove that these necessary conditions are sufficient consider the following three
cases and construct the (¢, Cy, Ky, ) graphs required to prove Theorem 9.

Case 1. ged(4,mn) =1 (i.e. m and n are odd).

Since Cy and K, , are bipartite graphs and ged(4, mn) = 1, lem(Cy, Ky, ) = 4mn
by Theorem 4. Therefore there exist (kmn, Cy, K, »,) graphs for all k = 0 (mod 4).
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Case 2. ged(4,mn) = 2.

Without loss of generality we may assume that m = 2 (mod 4) andn =1 (mod 2).
Let m = 2r and n = 25+ 1.

Let G = K, 25, Clearly G has 2mn edges and G can be decomposed into 2 edge-
disjoint copies of K, .

Also K, 0, = Koy.9, can be decomposed into rn copies of Ko (i.e. Cy). Thus a Cy
- decomposition of G' obtained.

Therefore there exist (kmn, Cy, K., ,,) graphs for all even k.

Case 3. ged(4,mn) = 4.

We need to consider two cases.

Case 3.1. m =0 (mod 4) and n is an odd number (or m is an odd number and
n =0 (mod 4)).

Let m = 4r and n be an odd number. Clearly K,,,, is not C4- decomposable since
it contains odd degree vertices.

We have to show that there exists a (kmn, Cy, K, ,,) graph for all k > 2.

It is sufficient to construct a (8rn, Cy, K, ) graph and a (12rn, Cy, K,,, ) graph as
all the required graphs can be constructed as the vertex-disjoint union of an ap-
propriate number of copies of (8rn, Cy, K,y ,,) graphs and (12rn, Cy, K,, ) graphs.
To construct a (8rn, Cy, Ky,.) graph G, we let G = Ky 9y,

Then G can be decomposed into 2 copies of K, , and 2rn edge-disjoint copies of
K272 (1e C4)

To construct a (12rn, Cy, K, ) graph G, let G = Ky, with vertex set V(G;) =
UUV, where U = {w;|i =1,2,....4r} and V = {v;|j = 1,2, ...,n},

E(Gy) = {(us,vy)|i =1,2,...,4r and j = 1,2,....,n}.

Let V' ={vi|j = 1,2,....2n} and U' = {uj]i = 1,2, ..., 2r}.

A (12rn,Cy, K, ) graph G is constructed with vertex set V(G) =U UV UV’ ul’
and edge set

E(G) = E(G1)U{(u;v))]i=1,2,...,2r and j = 1,2,...,n}
U{(ug, vj)[i = 2r +1,2r +2,...,4r and j =n+1,n+2,...,2n}
U{(u;, )i =1,2,...,2r and j = 1,2, ..., 2n}.

(2

Clearly G has 12 rn edges.

A K, ,-decomposition of G into the three edge-disjoint copies of K, ,, is given by
Gi,i = 1,2,3, where (5; is the graph defined above and G5 is the graph with edge
set

E(Gy) = {(uyv))]i=1,2,..,2rand j =1,2,...,n}
U{(u,v))|i =1,2,....,2r and j =1,2,....,n}.

1) 7]
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Let G3 be the graph with edge set

E(G3) = {(usv))]i=2r+1,2r+2,..,4rand j=n+1,n+2,..,2n}
U{(uj, v5)li = 1,2,...,2r and j =n+1,n+2,...,2n}.

A Cy - decomposition of G is given by the following 3rn edge-disjoint copies of Cj.
{(uj,vj)[i=1,2,...,2r and j = 1,2, ...,2n} gives rn copies of Cy,

{(ui, v5), (ui, v5)|i = 1,2, ..., 2r and j = 1,2,...,n} gives rn copies of Cy,

{(us,vp), (ug, )i =2r+1,2r+2, ., 4r,k=n+1,n+2,...,2nand j =1,2,...,n}
gives rn copies of Cy.

Case 3.2. m,n =0 (mod 2).

Then by Theorem 3, C4|K,,,, and hence there exist (kmn, Cy, K, ,,) graphs for all
E>1.
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