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Abstract: A graph G is a common multiple of two graphs H1 and H2 if there exists
a decomposition of G into edge-disjoint copies of H1 and also a decomposition of
G into edge-disjoint copies of H2. If G is a common multiple of H1 and H2, and G
has q edges, then we call G a (q,H1, H2) graph. Our paper deals with the following
question: Given two graphs H1 and H2, for which values of q does there exist
a (q,H1, H2) graph? when H1 is either a path or a star or a cycle and H2 is a
complete bipartite graph.
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1. Introduction
All graphs considered here are finite and undirected unless otherwise noted. Let

|V (G)| and e(G) denote, respectively, the order of a graph G and the size of G,
that is, the number of edges in G.

Kn denotes the complete graph on n vertices, and Km,n denotes the complete
bipartite graph with vertex partitions of cardinality m and n. A k-path, denoted
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by Pk, is a path with k vertices (is a path of length k− 1); a k-star, denoted by Sk,
is the complete bipartite graph K1,k; a k-cycle, denoted by Ck, is a cycle of length
k.

Let G and H be graphs. A decomposition of G is a set of edge-disjoint subgraphs
of G whose union is G. An H-decomposition of G is a decomposition of G into copies
of H. If G has an H-decomposition, we say that G is H-decomposable or Hdivides G
and write H|G.

Given two graphs H1 and H2, one may ask for a graph G that is a common
multiple of H1 and H2 in the sense that both H1 and H2 divide G. Several authors
have investigated the problem of finding least common multiples of pairs of graphs;
that is, graphs of minimum size which are both H1- and H2-decomposable. The
problem was introduced by Chartrand et al in [4] and they showed that every two
nonempty graphs have a least common multiple. It is clear that least common
multiple of two graphs may not be unique. The size of a least common multiple of
two graphs H1 and H2 is denoted by lcm(H1, H2). Also if q1 and q2 are two natural
numbers, their number theoretic lcm is denoted by lcm(q1, q2) as usual. Clearly, for
two graphs H1 and H2, lcm(H1, H2) ≥ lcm(e(H1), e(H2)). The problem of finding
the size of a least common multiple of graphs has been studied for several pairs
of graphs: cycles and stars [4, 11], paths and complete graphs [9], pairs of cycles
[8], pairs of cubes [2]. Pairs of graphs having a unique least common multiple were
investigated in [5] and least common multiples of digraphs were considered in [6].

If G is a common multiple of H1 and H2, and G has q edges, then we call G a
(q,H1, H2) graph. An obvious necessary condition for the existence of a (q,H1, H2)
graph is that e(H1)|q and e(H2)|q. This obvious necessary condition is not suf-
ficient. Some necessary conditions are easy to see and others are more difficult.
For example there is no (15, K3, K6) graph as there is no K3-decomposition of
K6. However, the non-existence of a (36, K3, K4) graph is somewhat less obvious.
Hence a natural question is: Given two graphs H1 and H2, for which values of q,
does there exist a (q,H1, H2) graph? Adams, Bryant, and Maenhaut [1] gave a
complete solution to this problem in the case where H1 is the 4-cycle and H2 is a
complete graph; Bryant and Maenhaut [3] gave a complete solution to this problem
in the case where H1 is the complete graph K3 and H2 is a complete graph. A
complete solution to this problem in the case where H1 is a path and H2 is a star
is investigated in [7].

In this paper we establish necessary and sufficient condition for the existence
of a (q, P4, Km,n) graph, a (q, P5, Km,n) graph, a (q, S3, Km,n) graph, a (q, S4, Km,n)
graph and a (q, C4, Km,n) graph. The graph theoretic concepts described here are,
of course, suggested by their number theoretic counterparts.
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2. Preliminaries
In this section we collect some needed terminologies and notations, and present

some results which are useful for our discussions. The complete graph with vertex
set {v1, v2,..., vm} will be denoted by [v1, v2,..., vm], the m-cycle Cm with vertex
set {v1, v2,..., vm} and edges {v1, v2}, {v2, v3},..., {vm, v1} will be denoted by
(v1, v2,..., vm), the m-path Pm with vertex set {v1, v2,..., vm} and edges {v1, v2},
{v2, v3},..., {vm−1, vm} will be denoted by 〈v1, v2, ..., vm〉 and the m-star Sm with
vertex set {v0, v1, v2,..., vm} and center at v0 will be denoted by [v0; v1, v2,...,
vm]. If G and H are graphs, and H is a subgraph of G, then the graph obtained
by removing the edges of H from G will be denoted by G −H. If G1 and G2 are
graphs, then the union of G1 and G2, denoted by G1 ∪ G2, is the graph with vertex
set V (G1 ∪G2) = V (G1)∪V (G2) and edge set E(G1 ∪G2) = E(G1)∪E(G2). (We
shall only be considering the union of edge-disjoint graphs.)
We recall three results on Pk+1-decomposition, Sk-decomposition, and Ck - decom-
position of Km,n as follows.

Theorem 1. [10] Let k,m, and n be positive integers. There exists a Pk+1-
decomposition of Km,n if and only if mn ≡ 0 (mod k) and one of the cases in
Table 1 occurs:

Table 1: Necessary and Sufficient Conditions for Pk+1-Decomposition of Km,n

Case k m n Characterization
1. even even even k ≤ 2m, k ≤ 2n, not both equalities
2. even even odd k ≤ 2m− 2, k ≤ 2n
3. even odd even k ≤ 2m, k ≤ 2n− 2
4. odd even even k ≤ 2m− 1, k ≤ 2n− 1
5. odd even odd k ≤ 2m− 1, k ≤ n
6. odd odd even k ≤ m, k ≤ 2n− 1
7. odd odd odd k ≤ m, k ≤ n

Theorem 2. [13] Let k, m, and n be positive integers with m ≤ n. There exists
an Sk-decomposition of Km,n if and only if one of the following conditions holds:

1. m ≥ k and mn ≡ 0 (mod k);

2. m < k ≤ n and n ≡ 0 (mod k).

Theorem 3. [11] Let k, m, and n be positive integers. Km,n has a C2k-decomposition
if and only if m and n are even, k ≥ 2,m ≥ k, n ≥ k, and mn ≡ 0 (mod 2k).
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We will use the following theorem on the least common multiple of two bipartite
graphs by O. Favaron and C. M. Mynhardt.

Theorem 4. [8] If F and G are bipartite, then lcm(F,G) ≤ e(F )e(G), where
equality holds if gcd(e(F ), e(G)) = 1.

3. Common Multiples of P4 and Km,n

In this section we determine, for all positive integers m and n, the set of integers
q for which there exists a common multiple of P4 (4-path) and Km,n having precisely
q edges.

Theorem 5. There exists a graph with q edges that is both P4-decomposable and
Km,n- decomposable if and only if

1. q ≡ 0 (mod 3) and q ≡ 0 (mod mn); and

2. q 6= mn when m = 1, n ≡ 0 (mod 3) (or n = 1,m ≡ 0 (mod 3)).

Proof. If there exists a (q, P4, Km,n) graph, then we require that 3 divides q and
that mn divides q. Necessity of (1) is obvious. If m = 1, n ≡ 0 (mod 3), or
n = 1,m ≡ 0 (mod 3), then lcm(3,mn) = 3, but Km,n is not P4-decomposable
(Theorem 1). So q 6= mn.
To prove the sufficient conditions consider the following cases.
Case 1. gcd(3,mn) = 1.
Since P4 and Km,n are bipartite graphs and gcd(3,mn) = 1, lcm(P4, Km,n) =
3mn by Theorem 4. Therefore there exists a (kmn, P4, Km,n) graph for all k ≡ 0
(mod 3).
Case 2. gcd(3,mn) = 3.
Then either 3|m or 3|n, since 3 is a prime number. So this case can be divided into
two subcases.
Case 2.1. m,n ≥ 2.
By Theorem 1, P4|Km,n for all m,n ≥ 2 and hence there exists a (kmn, P4, Km,n)
graph for all k ≥ 1.
Case 2.2. m = 1, n ≡ 0 (mod 3) (or n = 1,m ≡ 0 (mod 3)).
Suppose that m = 1, n ≡ 0 (mod 3). Let n = 3r.
Now it is sufficient to construct a (kmn, P4, Km,n) graph G for all k > 1. For this
we let G be Kk,n, where k ≥ 2. Then G can be decomposed into k edge-disjoint
copies of K1,n and G is P4- decomposable by Theorem 1. Similarly we can prove
the case when n = 1,m ≡ 0 (mod 3) since Km,n

∼= Kn,m.
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4. Common Multiples of P5 and Km,n

In this section we determine, for all positive integers m and n, the set of integers
q for which there exists a common multiple of P5 (5-path) and Km,n having precisely
q edges.

Theorem 6. There exists a graph with q edges that is both P5-decomposable and
Km,n- decomposable if and only if

1. q ≡ 0 (mod 4) and q ≡ 0 (mod mn); and

2. q 6= mn when m = n = 2 , m = 1, n ≡ 0 (mod 4) or n = 1,m ≡ 0 (mod 4).

Proof. If there exists a (q, P5, Km,n) graph, then we require that 4 divides q and
that mn divides q. Necessity of (1) is obvious. If m = n = 2, then lcm(4,mn) = 4,
but K2,2 is not P5-decomposable. So q 6= 4. If m = 1, n ≡ 0 (mod 4), or
n = 1,m ≡ 0 (mod 4), then lcm(4,mn) = 4, but Km,n is not P5-decomposable
by Theorem 1. So q 6= mn.
To prove the sufficient conditions consider the following cases.
Case 1. gcd(4,mn) = 1.
Then m and n are odd numbers. Since P5 and Km,n are bipartite graphs and
gcd(4,mn) = 1, lcm(P5, Km,n) = 4mn by Theorem 4. Therefore there exists a
(kmn, P5, Km,n) graph for all k ≡ 0 (mod 4).
Case 2. gcd(4,mn) = 2.
Then m ≡ 2 (mod 4) and n is odd (or n ≡ 2 (mod 4) and m is odd). Without
loss of generality we may assume that m ≡ 2 (mod 4) and n is odd.
Since lcm(4,mn) = 2mn, it is sufficient to construct a (2mn,P5, Km,n) graph G,
as all the required graphs can be constructed as the vertex-disjoint union of the
appropriate number of copies of this.
If m = 2, n = 1, to construct a (4, P5, Km,n) graph G, we let G be P5, which is
both P5-decomposable and K2,1-decomposable. If m > 2, n = 1, to construct a
(2m,P5, Km,1) graph G, we let G be Km,2, which is both P5-decomposable (The-
orem 1) and Km,1-decomposable. If m ≥ 2, n > 1, to construct a (2mn,P5, Km,n)
graph G, we let G be Km,2n. Clearly G can be decomposed into two edge-disjoint
copies of Km,n. G is P5-decomposable by Theorem 1.
Case 3. gcd(4,mn) = 4.
This case can be divided into four subcases.
Case 3.1. m ≡ 0 (mod 4), n = 1 (or n ≡ 0 (mod 4),m = 1).
Then 4|mn. The graph Km,n is not P5-decomposable and there is no graph with
mn edges which is both Km,n-decomposable and P5-decomposable. Now it is suffi-
cient to construct a (kmn, P5, Km,n) graph G for all k > 1. For this case we let G
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be Km,k, k ≥ 2. G can be decomposed into k edge-disjoint copies of Km,1. For all
k ≥ 2, G is P5-decomposable by Theorem 1.
Case 3.2. m ≡ 0(mod 4), n > 1, an odd number(or n ≡ 0 (mod 4), m > 1, an
odd number).
Let m = 4r and n = 2s + 1, where r, s ≥ 1. Then by Theorem 1, P5|Km,n.
Case 3.3. m = n = 2.
It is sufficient to construct an (8, P5, K2,2) graph and a (12, P5, K2,2) graph and all
the required graphs can be constructed as the vertex disjoint union of appropriate
number of copies of these.
To construct an (8, P5, K2,2) graph G, we let G be the union of the following two
edge-disjoint copies of K2,2 (i.e. C4):

(1, 2, 3, 4) and (4, 5, 6, 7).

A P5-decomposition of G is given by the following two edge-disjoint copies of
P5:

〈2, 3, 4, 5, 6〉 and 〈2, 1, 4, 7, 6〉.
To construct a (12, P5, K2,2) graph G, we let G be the union of the following

three edge-disjoint copies of K2,2 (i.e. C4):

(1, 2, 3, 4), (4, 5, 6, 7) and (6, 8, 9, 10).

A P5-decomposition of G is given by the following three edge-disjoint copies of
P5:

〈1, 2, 3, 4, 5〉, 〈5, 6, 10, 9, 8〉 and 〈8, 6, 7, 4, 1〉.
Case 3.4 m,n ≡ 0 (mod 2), m,n ≥4.
Then 4|mn and by Theorem 1, P5|Km,n.
Cases 3.1 and 3.3 allow us to construct the (q, P5, Km,n) graphs that we require for
the sufficient condition(2) of Theorem 6.

5. Common Multiples of S3 and Km,n

In this section we determine, for all positive integers m and n, the set of integers
q for which there exists a common multiple of S3(3-star) and Km,n having precisely
q edges.

Theorem 7. There exists a graph with q edges that is both S3-decomposable and
Km,n -decomposable if and only if q ≡ 0 (mod 3) and q ≡ 0 (mod mn).
Proof. If there exists a (q, S3, Km,n) graph, then clearly we require 3 divides q and
mn divides q.
To prove the sufficient conditions consider the following cases.
Case 1. gcd(3,mn) = 1.
Since S3 and Km,n are bipartite and gcd(3,mn) = 1, lcm(S3, Km,n) = 3mn, by
Theorem 4. In this case we can take a (q, S3, Km,n) graph G as K3m,n or Km,3n.
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Both graphs contain 3mn edges and G can be decomposed into 3 edge-disjoint
copies of Km,n and mn edge-disjoint copies of K1,3 (i.e. S3). Therefore there exists
a (kmn, S3, Km,n) graph for all k ≡ 0 (mod 3).
Case 2. gcd(3,mn) = 3.
In this case either 3|m or 3|n, since 3 is a prime number. Then S3|Km,n, by Theorem
2. So there exists a (kmn, S3, Km,n) graph for all k ≥ 1.

6. Common Multiples of S4 and Km,n

In this section we determine, for all positive integers n, the set of integers q for
which there exists a common multiple of S4 (4-star) and Km,n having precisely q
edges.

Theorem 8. There exists a graph with q edges that is both S4-decomposable and
Km,n -decomposable if and only if

1. q ≡ 0 (mod 4), q ≡ 0 (mod mn); and

2. q 6= 4 when m = n = 2.

Proof. If there exists a (q, S4, Km,n) graph, then clearly we require 4 divides q and
mn divides q. If m = n = 2, then mn = 4 and there is no (4, S4, Km,n) graphs.
A graph with 4 edges containing S4 is S4 itself, but S4 is not K2,2-decomposable.
Similarly a graph with 4 edges containing K2,2 is not S4- decomposable. So q 6= 4
when m = n = 2.
To prove the sufficient conditions consider the following cases.
Case 1. gcd(4,mn) = 1.
Then m and n are odd numbers. Since S4 and Km,n are bipartite graphs and
gcd(4,mn) = 1 , lcm(S4, Km,n) = 4mn, by Theorem 4. Therefore there exists a
(kmn, S3, Km,n) graph for all k ≡ 0 (mod 4).
Case 2. gcd(4,mn) = 2.
Without loss of generality we may assume that m is an even number not divisible
by 4 and n is an odd number.
Let m = 2r and n = 2s + 1, where r > 1, s ≥ 0.
Let G = K2m,n be the required (q, S4, Km,n) graph. Clearly G has 2mn edges and
G can be decomposed into two edge-disjoint copies of Km,n.
K2m,n = K4r,n can be decomposed into rn edge-disjoint copies of K4,1(i.e.S4). Thus
an S4-decomposition of G is obtained.
Therefore there exist (kmn, S4, Km,n) graphs for all even k.
Case 3. gcd(4,mn) = 4.
Here we need to consider three cases.
Case 3.1. m ≡ 0 (mod 4), n ≥ 1 (or n ≡ 0 (mod 4), m ≥ 1).
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Let m = 4r and n ≥ 1. Then Km,n = K4r,n can be decomposed into rn copies of
K4,1(i.e.S4). In this case S4|Km,n.
Case 3.2. m ≡ 2 (mod 4) & n ≡ 2 (mod 4).
Let m = 4r + 2 and n = 4s + 2.
Then by Theorem 2, S4|Km,n for all r and s except the case when r = s = 0 ( i.e.
m = n = 2).
Case 3.3. m = n = 2.
Clearly K2,2 is not S4 - decomposable. For a (8, S4, K2,2) graph G, consider G =
K2,4 and it is S4-decomposable and K2,2-decomposable.
To construct a (12, S4, K2,2) graph G, we let G be the union of following three
edge-disjoint copies of K2,2(or C4):

(0, 1, 2, 3), (5, 4, 7, 2) and (4, 6, 0, 8).

An S4-decomposition of G is given by the following three edge-disjoint copies
of S4:

[0; 1, 3, 6, 8], [2; 1, 3, 5, 7] and [4; 5, 6, 7, 8].
All other required graphs can be constructed by the vertex disjoint union of ap-
propriate number of copies of (8, S4, K2,2) and (12, S4, K2,2).

7. Common Multiples of C4 and Km,n

In this section we determine, for all positive integers m and n, the set of inte-
gers q for which there exists a common multiple of C4 (4-cycle) and Km,n having
precisely q edges.

Theorem 9. There exists a graph with q edges that is both C4-decomposable and
Km,n-decomposable if and only if

1. q ≡ 0 (mod 4) and q ≡ 0 (mod mn); and

2. q 6= mn when 4|m, n is an odd number (or 4|n, m is an odd number).

Proof. If there exists a (q, C4, Km,n) graph, then clearly we require 4 divides q
and mn divides q. Consider the cases when 4|m and n is an odd number, or 4|n
and m is an odd number. We prove only one case since Km,n

∼= Kn,m. Suppose
that 4|m and n is an odd number. Then 4|mn, but by Theorem 3, Km,n is not C4-
decomposable since n is odd. So q 6= mn in this case.
To prove that these necessary conditions are sufficient consider the following three
cases and construct the (q, C4, Km,n) graphs required to prove Theorem 9.
Case 1. gcd(4,mn) = 1 (i.e. m and n are odd).
Since C4 and Km,n are bipartite graphs and gcd(4,mn) = 1, lcm(C4, Km,n) = 4mn
by Theorem 4. Therefore there exist (kmn,C4, Km,n) graphs for all k ≡ 0 (mod 4).
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Case 2. gcd(4,mn) = 2.
Without loss of generality we may assume that m ≡ 2 (mod 4) and n ≡ 1 (mod 2).
Let m = 2r and n = 2s + 1.
Let G = Km,2n. Clearly G has 2mn edges and G can be decomposed into 2 edge-
disjoint copies of Km,n.
Also Km,2n = K2r,2n can be decomposed into rn copies of K2,2 (i.e. C4). Thus a C4

- decomposition of G obtained.
Therefore there exist (kmn,C4, Km,n) graphs for all even k.
Case 3. gcd(4,mn) = 4.
We need to consider two cases.
Case 3.1. m ≡ 0 (mod 4) and n is an odd number (or m is an odd number and
n ≡ 0 (mod 4)).
Let m = 4r and n be an odd number. Clearly Km,n is not C4- decomposable since
it contains odd degree vertices.
We have to show that there exists a (kmn,C4, Km,n) graph for all k ≥ 2.
It is sufficient to construct a (8rn, C4, Km,n) graph and a (12rn, C4, Km,n) graph as
all the required graphs can be constructed as the vertex-disjoint union of an ap-
propriate number of copies of (8rn, C4, Km,n) graphs and (12rn, C4, Km,n) graphs.
To construct a (8rn, C4, Km,n) graph G, we let G = K4r,2n.
Then G can be decomposed into 2 copies of Km,n and 2rn edge-disjoint copies of
K2,2 (i.e. C4).
To construct a (12rn, C4, Km,n) graph G, let G1 = K4r,n with vertex set V (G1) =
U ∪ V , where U = {ui|i = 1, 2, ..., 4r} and V = {vj|j = 1, 2, ..., n},
E(G1) = {(ui, vj)|i = 1, 2, ..., 4r and j = 1, 2, ..., n}.
Let V ′ = {v′j|j = 1, 2, ..., 2n} and U ′ = {u′i|i = 1, 2, ..., 2r}.
A (12rn, C4, Km,n) graph G is constructed with vertex set V (G) = U ∪V ∪V ′ ∪U ′
and edge set

E(G) = E(G1) ∪ {(ui, v
′
j)|i = 1, 2, ..., 2r and j = 1, 2, ..., n}

∪{(ui, v
′
j)|i = 2r + 1, 2r + 2, ..., 4r and j = n + 1, n + 2, ..., 2n}

∪{(u′i, v′j)|i = 1, 2, ..., 2r and j = 1, 2, ..., 2n}.

Clearly G has 12 rn edges.
A Km,n-decomposition of G into the three edge-disjoint copies of Km,n is given by
Gi, i = 1, 2, 3, where G1 is the graph defined above and G2 is the graph with edge
set

E(G2) = {(ui, v
′
j)|i = 1, 2, ..., 2r and j = 1, 2, ..., n}

∪{(u′i, v′j)|i = 1, 2, ..., 2r and j = 1, 2, ..., n}.
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Let G3 be the graph with edge set

E(G3) = {(ui, v
′
j)|i = 2r + 1, 2r + 2, ..., 4r and j = n + 1, n + 2, ..., 2n}

∪{(u′i, v′j)|i = 1, 2, ..., 2r and j = n + 1, n + 2, ..., 2n}.

A C4 - decomposition of G is given by the following 3rn edge-disjoint copies of C4.
{(u′i, v′j)|i = 1, 2, ..., 2r and j = 1, 2, ..., 2n} gives rn copies of C4,
{(ui, v

′
j), (ui, vj)|i = 1, 2, ..., 2r and j = 1, 2, ..., n} gives rn copies of C4,

{(ui, v
′
k), (ui, vj)|i = 2r + 1, 2r + 2, ..., 4r, k = n + 1, n + 2, ..., 2n and j = 1, 2, ..., n}

gives rn copies of C4.
Case 3.2. m,n ≡ 0 (mod 2).
Then by Theorem 3, C4|Km,n and hence there exist (kmn,C4, Km,n) graphs for all
k ≥ 1.
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